22 Oct 2018

The 21st ACM Conference on Computer-Supported Cooperative Work and Social Computing
(CSCW)

November 3rd-7th, 2018, New York City

Amira Ghenai (Waterloo University), Yelena Mejova (ISI Foundation - Turin, Italy)

%?’ WATERLOO



Buzzsumo\\ Solutions +  Customers Pricing Blog Resources ~ Signup  Login
We're Hiring!

Analyze what content performs best for any topic or competitor

Find the key influencers to promote your content

Enter a topic or domain to try out BuzzSumo (e.g. content marketing or cnn.com)

For example: Content Marketing, Cnn.com

Fake Cures: User-centric Modeling of Health
Misinformation in Social Media
Amira Ghenai




Topic: “cancer cure”

cancer cure

How to run an Advanced Search

Sortby = Total Engagements

Hemp Could Free Us From Oil, Prevent Deforestation, Cure Cancer, and It's Environmentally Friendly

By Truthcommand — Mar 31,2018
truthcommand.com

A YouTuber who claimed being vegan cured her cancer has died from cancer

By Harry Shukman — Feb 14,2018
babe.net

Cancer vaccine that cured 97% of tumours in mice will be tested on humans

By Alexandra Thompson Health... — Mar 28, 2018
dailymail.co.uk

A New Israeli Cancer Vaccine May Cure 90% of All Cancer Types in Just One Shot

By Jews News — Nov 25,2017
jewsnews.co.il

Woman 'cured’ her terminal cancer with cannabis oil

By Alexandra Thompson Health... — Mar 12,2018
dailymail.co.uk

Ex-Clinton staffer: If Obama cured cancer, Trump would try to bring it back

By Avery Anapol — Dec 5, 2017
thehill.com

Vegan YouTuber Who Said Veganism Cures Cancer Has Died Of Cancer

By Neelam Tailor — Feb 20, 2018
unilad.co.uk

DANDELION CURES CANCER, HEPATITIS, LIVER, KIDNEYS, STOMACH ... HERE'S HOW TO USE IT!

By Admin — Mar 9, 2018
dailynativenews.site

How Article

Fake Cures: User-centric Modeling of Health

Misinformation in Social Media PAGE 3

Amira Ghenai

[ Save

& View Backlinks
£ View Sharers
o3 Share

[l Save
& View Backlinks
£ View Sharers

o Share

[l Save

& View Backlinks
£ View Sharers
o Share

[l Save
& View Backlinks
£ View Sharers

o Share

[ Save
& View Backlinks
£ View Sharers

o Share

[l Save

& View Backlinks
£ View Sharers
o3 Share

[ Save
& View Backlinks
£ View Sharers

o Share

[ Save

& View Backlinks
£ View Sharers
o3 Share

Facebook Twitter Pinterest Reddit Number
Engagements  Shares Shares  Engagements of Links

Evergreen
Score

Total
Engagements l

294.9K

99.2K

88.8K

88.2K

88K

74.9K

59.3K

54.3K



Topic: “cancer cure” They are all

unproven
treatments

cancer cure

How to run an Advanced Search

Sortb Facebook Twitter Pinterest Reddit Number Evergreen Total
ortby  Total Engagements Engagements  Shares Shares  Engagements of Links Score  Engagements |
. . . . S

ould Free Us From Oil, Prevent Deforestation, Cure Cancer, and It's Environmentally Friendly 57 Vla:; Backiinks

By Iruthcommand — Mar 31,2018 9 View Sharers 13 294.9K
truthcommand.com o2 Share

: : : [ Save

A YouTuber who claimed being veganficured her cancer has died from cancer & View Backlinks

By Harry Shukman — Feb 14,2018 Q View Sharers 7 99.2K
babe.net o8 Share

[l Save

: o o .
Cance] vaccineffhat cured 97% of tumours in mice will be tested on humans & View BacKlinks
By Alexandra Thompson Health... — Mar 28, 2018 Q View Sharers 82.8K 12 88.8K
dailymail.co.uk o2 Share
. . . S
A New Israeli Cancef VaccineMay Cure 90% of All Cancer Types in Just One Shot 4 o ki ‘ ° 0 ° ‘
‘ 88.1K 10 88.2K

By Jews News — Nov 25, 2017 £ View Sharers
jewsnews.co.il o8 Share

By Alexandra Thompson Health... — Mar 12, 2018 2 View Sharers
dailymail.co.uk o8 Share

Woman 'cured' her terminal cancer withfcannabis oil Hsave
&’ View Backlinks . 88K

[l Save

Ex-Clinton staffer: If Obama cured cancer, Trump would try to bring it back & View Backlinks

By Avery Anapol — Dec 5, 2017 Q View Sharers 6 74.9K
thehill.com o8 Share

VeganfYouTuber Who Said Veganism Cures Cancer Has Died Of Cancer 4 32’; Backiinks

By Neelam Tailor — Feb 20, 2018 Q View Sharers 4 59.3K
unilad.co.uk o2 Share

DANDELIONJCURES CANCER, HEPATITIS, LIVER, KIDNEYS, STOMACH ... HERE'S HOW TO USE IT! [ Save

— 018 & View Backlinks . sasK

dailynativenews.site £ View Sharers -
How Article g Share

Fake Cures: User-centric Modeling of Health
Misinformation in Social Media PAGE 5
Amira Ghenai



Topic: “cancer cure” They are all

unproven
treatments

cancer cure

How to run an Advanced Search

Sortb Total E NV Facebook Twitter Pinterest Reddit Number
y otal Engagements Engagements  Shares Shares  Engagements of Links

ould Free Us From Oil, Prevent Deforestation, Cure Cancer, and It's Environmentally Friendly 57 fha:; Backiinks
By lruthcommand — Mar 31,2018 2 View Sharers ° ‘
truthcommand.com o8 Share
A YouTuber who claimed beind veganfcured her cancer has died from cancer 5) 3?:; Backiinks
By Harry Shukman — Feb 14,2018 2 View Sharers
babe.net o8 Share

[l Save

: o . . .
Cancej vaccinefghat cured 97% of tumours in mice will be tested on humans & View Backlinks
By Alexandra Thompson Health... — Mar 28, 2018 £2 View Sharers pZLK
dailymail.co.uk o8 Share
A New Israeli Cancef Vaccine [May Cure 90% of All Cancer Types in Just One Shot 4 3?:; Backlinks ‘ ° 0 ° ‘
. . 88.1K

By Jews News — Nov 25, 2017 £ View Sharers
jewsnews.co.il o8 Share
Woman 'cured' her terminal cancer wit Hsave
&’ View Backlinks
By Alexandra Thompson Health... — Mar 12, 2018 £2 View Sharers @ 0 6 a
dailymail.co.uk e

Ex-Clinton staffer: If Obama cured cancer, Trump would try to bring it back ‘ ° ‘
By Avery Anapol — Dec 5, 2017 e &
Cancer patients!

ou”mber Who Said Veganism Cures Cancer Has Died Of Cancer

By Neelam Tailor — Feb 20, 2018
unilad.co.uk

o3 Share
DANDELIONJCURES CANCER, HEPATITIS, LIVER, KIDNEYS, STOMACH ... HERE'S HOW TO USE IT! [ Save
— — 01¢ & View Backlinks
dailynativenews.site £ View Sharers
o3 Share

How Article

Fake Cures: User-centric Modeling of Health
Misinformation in Social Media PAGE 7
Amira Ghenai

Evergreen
Score

13

12

10

15

Total
Engagements l

294.9K

99.2K

88.8K

88.2K

88K

74.9K

59.3K

54.3K



Problem Statement

= Social media use for health management is growing

= 62% of internet users in U.S. use social networking sites for health
related topics

= Accountability, quality and confidentiality issues

= Perfect medium for propagating possible medical
misinformation

= Serious threat to public health
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Pronosed Solution

“Fake cancer treatments” topic
= Method: user modeling

= Aim: determine characteristics of users propagating
unverified “cures” of cancer on Twitter

= Benetits: allow public health officials to
= Detect potential sources of misinformation
= Monitor social media communications
= Identify current limitations and improve them

= Detect new misinformation before it causes harm
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i - Rumor/Control | : S ! Relevance
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1. Control Group causes symptoms
awareness

. Preventions
" General cancer tOplCS y .

= We use Paul and Dredze (11 dataset
= 144 million tweets related to health topics
= Dataset time period between 01 August 2011 - 28 February 2013

= Cancer topic has 676,236 users who posted 969,259 tweets

[1] Michael J Paul and Mark Dredze. 2014. Discovering health topics in social media using topic models. PloS one 9,8 (2014),
€103408.
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2. Rumor Group
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4
' data collection

—_———— - -
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2. Rumor Group

= 139 total unproven cancer treatments from 3
different sources

= Validated by trained oncologist
= Collect tweets about treatments:
= Same time period as control group

= Hand craft query & query expansion

User Selection

- —————

1
Relevance |
Refinement |
i

- ———— -

Our evidence About us

Latest News and Events

© Cochrane =

CEENET OB FE VRN [SopeiBcsuiane] oftword
- - y '

JoinCochrane  News and jobs

Search. X
Cu(hmne Library

Truth, falsehood and evidence: investigations of dubious and dishonest science

DC's Improbable Science

= 30,675 users with 215,109 tweets
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f ] ( 1 ( |
B ' Rumor/Control ! ! . ! ' Relevance !
n ata c n I I e ctl n n - data collection |, : User Selection : . Refinement |
Topic* Expanded Query Example Tweet
Soursop (Soursop:OR:Graviola:OR:guyabano: “[...] University show that the

OR:guanabana:OR:"Annona:muricat soursop fruit kills cancer cells
a":OR:"Annona:crassiflora":OR:"Gua effectively, particularly prostate
nabanus:muricatus":OR:"Annona:bo cancer cells, pancreas and lung.”
nplandiana":OR:"Annona:cearensis":
OR:"Annona:muricata"):AND:cancer

Ginger ginger:AND:cancer “Can ginger help cure ovarian
cancer? Since 2007, the
University of [...] has been
studying GINGER... <url>”

Antineoplaston  (antineoplaston:OR:burzynski):AND: “RT Dr. Burzynski He has the
cancer cure for cancer, the FDA want to
shut him down <url>"

* The topics (along with the keyword queries) are available at https://tinyurl.com/y78mkg6s
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Relevance

Rumor/Control
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data collection User Selection
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Rumor Control
215,109 tweets 069,250 tweets
39,675 users 676,236 users
[ Humanizr [2] ]— —————— i— ——————————————— _i _____ S
39,514 users 675,621 users

[2] James McCorriston, David Jurgens, and Derek Ruths. 2015. Organizations Are Users Too: Characterizing and Detecting
the Presence of Organizations on Twitter. In ICWSM. 650—653.
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Relevance

Rumor/Control
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Rurlnor Control
215,109I tweets 969,25§ tweets
39,675 users 676,236 users
[ Humanizr [2] ]— —————— i— ——————————————— _i _____ S
39,514 users 675,621 users
[ Name Lexicon ]— —————— :— ———————————————— : _____ S
24,441 users 469,494 users

[2] James McCorriston, David Jurgens, and Derek Ruths. 2015. Organizations Are Users Too: Characterizing and Detecting
the Presence of Organizations on Twitter. In ICWSM. 650—653.
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Relevance

Rumor/Control
Refinement

data collection User Selection

——————
P —
- 4
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Rumor Control

215,109 tweets 069,250 tweets
39,675 users 676,236 users

| Humanizr [2] ]— —————— RRpR R _i _____ S
39,514 users 675,621 users

| Name Lexicon ]— —————— :— ———————————————— : _____ -
24,441 users 469,494 users

Tweet Rate | —————— E_ _______________ _E _____ .

Filter ; ;

17,978 users 324,500 users

[2] James McCorriston, David Jurgens, and Derek Ruths. 2015. Organizations Are Users Too: Characterizing and Detecting
the Presence of Organizations on Twitter. In ICWSM. 650—653.
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= We check whether every tweet is relevant to the topic of
interest, we define users as follows:

Relevance

Rumor/Control E
Refinement

data collection |

]

User Selection

- ———— -
-

N
|
|
|
|
l

- —————

f
\
\
\
\
|

= Rumor group - users who claim a cure is helpful for treating cancer
and not users who talk about other topics such as prevention or

debunking

= Control group - users who post at least once about cancer
symptoms, awareness, prevention, cause or personal experience etc.
but not about a cancer cure

= To make our users follow these definitions, we use:

= Crowdsourcing & Classification — machine learning
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f 1 ( 1 ( |
B ' Rumor/Control ! ! Lo ' Relevance |
n ata c n I I e ctl n n . data collection | : User Selection : . Refinement |
1. Crowdsourcing
a) Sample the tweets (4,000 tweets from rumor and control groups)
b)  Label the sampled tweets:
Rumor group - whether the tweet is about: Control group - whether the tweet is about:
i.  cancer treatment helps with i. cancer, and has personal (or
treating cancer friend/family) experience
ii. cancer treatment does not help ii. about cancer treatment
with treating cancer (debunks the iii. other cancer-related information
claim) (symptoms, awareness, prevention,
iii. cancer treatment prevents cancer causes, etc.)
iv. No potential cancer remedy iv. No information about cancer
(Note: participants did not access the veracity of the tweets!)
c) 184 CrowdFlower annotators contributed to the task
d) A minimum of three labels collected per tweet
: : UNIVERSITY OF
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« WATERLOO

Misinformation in Social Media PAGE 26 @
Amira Ghenai



Relevance

Rumor/Control E i
Refinement |

data collection |

]

4
1 User Selection

- ———— -
~—————
-

2. Classification
= We train several classifiers on the labeled tweets using 1,2,3-grams
as features
= We train the classifiers on the labeled tweets, which we then apply
to the rest to characterize each user’s behavior
= For every label in every group, we build a binary logistic
regression classifier
> Example: from the crowdsourcing task of rumor% 2,564 were
cancer cure tweets and 1,587 were not. We build the c ssz er and apply
it to the rest of (non-labeled) rumor tweets which results ln 12,685
tweets about cancer cure and 7,872 not
= 7,221 rumor user and 433,883 control users
Fake Cures: User-centric Modeling of Health % WR’.IEESRITIIOOFO
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= We observe the behavioral statistics of three different users:
= Rumor group users
= Control group personal experience users

= Control group non-personal experience users

= The different groups are compared using:

= Mann-Whitney U test (a non-parametric test that is more
appropriate for highly skewed data for which normality cannot be
assumed)

= p-value level
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= We are interested in examining whether we can predict the
“rumor spreading” behavior before users spread the rumors

= We look at all the tweets before a user posts a tweet about
the rumor (not necessarily claims the rumor)

1. We collect all tweets timeline of every user —>get more information
about users online behavior/content

2.  We keep only tweets before the rumor tweet -> only behavior
before posting a rumor tweet
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Now

Rumor users
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4,212 users

3,200 tweets (Twitter API User Endpoint)
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52,046 personal,
37,191 not personal
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Now -

Rumor users

First tweet

First rumog date ¢; (u, o)

|

4,212 users

Predictive rumormongering rumor tweets

\ 2

|
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First tweet | = Now
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i |
Predictive rumormongering control tweets 4,212 USers
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= Based on our previous work, we use behavior and content
features to access the credibility content in Twitter

= User featuresisi: encompass proxies of popularity (#followers,
#followees), as well as productivity (# tweets up to date).

= Tweet featuresys;: linguistic and semantical forms of the tweet
averaged for every user (sentiment, characters, domains etc...)

= Entropy: the intervals between posts to measure the predictability of
retweeting patterns

= LIWC (Linguistic Inquiry and Word Count): psycholinguistic
measures shown to express user mindset

[3] Amira Ghenai, Yelena Mejova, 2017, January. Catching Zika Fever: Application of Crowdsourcing and Machine Learning for
Tracking Health Misinformation on Twitter. The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017),
Park City, Utah.
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Resuits - Modeling Rumormongering

= We apply logistic regression with LASSO regularization
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Resuits - Modeling Rumormongering

= We apply logistic regression with LASSO regularization

= We use Akaine Information Criterion (AIC) for feature selection
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Resuits - Modeling Rumormongering

= We apply logistic regression with LASSO regularization
= We use Akaine Information Criterion (AIC) for feature selection

= Results of the model shows McFadden R? is 0.925
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Resuits - Modeling Rumormongering

= We apply logistic regression with LASSO regularization
= We use Akaine Information Criterion (AIC) for feature selection

= Results of the model shows McFadden R? is 0.925

= Instead of randomly sampling the control, we apply a matched
experiment:

= For each rumor user, select the control user with closest match of
number of followers
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Resuits - Modeling Rumormongering

= We apply logistic regression with LASSO regularization
= We use Akaine Information Criterion (AIC) for feature selection

= Results of the model shows McFadden R? is 0.925

= Instead of randomly sampling the control, we apply a matched
experiment:

= For each rumor user, select the control user with closest match of
number of followers

= Results of the regression model with new matched samples shows
McFadden RZ is 0.906
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Figure 2: Logistic regression with
LASSO regularization model, predicting
whether a user posts about a rumor,
with forward feature selection.

For each feature, coefficient
(unstandardized), standard error, and
accompanying p-value are shown.
Significance levels: p < 0.0001 ***, p <
0.001 **, p < 0.01 *, p < 0.05.
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variable coefficient std. error p-value
(Intercept) -6.160 1.405 ***
Avg syllables per word 17.120 0.660 ***
Is verified -40.310 42310
Percentage uppercase / lowercase -0.201 0.018 ***
Word count 1.491 0.131 ™
SMOG readability score -0.753 0.123 ***
Percentage uppercase 0.191 0.019 ***
Character count -0.163 0.024 ***
Number of cancer tweets 0.001 1.9E-04 ***
LIWC48: ingest 1.839 0.722 *
Negative word count -1.460 0.262 ***
URL count 3.364 0.505 ***
Is retweet 4.947 0.790 ***
word2vec count -0.634 0.165 ***
LIWC55: focuspast -1.636 0.567 **
LIWC37: tentat 2.531 0.859 **
Number of sentences -0.610 0.205 **
LIWC32: male -1.820 1.000
Interval entropy 0.508 0.105 ***
Account age -0.001 2.7E-04 ***
LIWC23: posemo -0.490 0.384
LIWC61: time -1.431 0.378 ***
LIWC13: adverb 1.758 0.536 **
LIWC20: number 2.936 1.317 *
Statuses count 7.1E-05 2.6E-05 **
LIWC42: hear -4.742 1.799 **
Has 1st person pronoun -1.504 0.662 *
LIWC62: work 1.591 0.665 *
LIWC40: percept 1.217 0.754
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Readability

Figure 2: Logistic regression with

LASSO regularization model, predicting

whether a user posts about a rumor,
with forward feature selection.
For each feature, coefficient

(unstandardized), standard error, and

accompanying p-value are shown.

Significance levels: p < 0.0001 *** p <

0.001 **, p < 0.01 *, p < 0.05.
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Tentative lang

Figure 2: Logistic regression with
LASSO regularization model, predicting
whether a user posts about a rumor,
with forward feature selection.

For each feature, coefficient
(unstandardized), standard error, and
accompanying p-value are shown.
Significance levels: p < 0.0001 ***, p <
0.001 **, p < 0.01 *, p < 0.05.
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Control History Rumor History Rumor Misinformation
love 1.95% night  0.66% | good 1.01% video 0.54% | cancer 1.43%  cells 0.50%
good 1.55% life 0.63% | health 1.00% food 0.54% | juice 0.81% out 0.48%
day 1.34% happy 0.60% | day 0.96% back 0.50% | RT 0.77%  healthy 0.45%
time 1.22% il 0.59% | love 0.85% free 0.46% | breast 0.73%  diabetes 0.44%
people 1.00% hope 0.58% | time 0.78%  work 0.45% | risk 0.61% prostate 0.44%
lol 0.99% feel 0.55% | great 0.73%  diet 0.44% | help 0.58% antioxidant 0.42%
today 0.96% haha 0.51% | people 0.71% healthy 0.40% | health 0.55% pain 0.40%
back 0.94% follow 051% | today  0.68% post 0.38% | helps 0.54%  chronic 0.37%
great 0.73% home  0.49% | news 0.62% weight  0.38% | cure 0.54%  patients 0.37%
work 0.70% man 0.47% | life 0.57%  blog 0.36% | treatment 0.53% study 0.36%

Figure 3: Word frequency tables summarizing the top 20 most popular terms,
excluding stopwords, in all historical tweets by control users (left), all historical
tweets of rumor users (center), and only rumor tweets (right).
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= The model exemplifies a tool to monitor misinformation on
large scale

= Automatically detect users more likely to post questionable facts
= Use persuasive technologies to change users’ attitudes

= Timely identification of new potential rumor topics

= Useful dataset to explore other research topics

= Understand the emotional and mental state of susceptible users
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